Security Review Report
NM-0541 chukkerCoin

NETHERMIND

{J} SECURITY

(May 15, 2025)

NETHERMIND

{J} SECURITY

Contents
1 Executive Summary 2
2 Audited Files 3
3 Summary of Issues 3
4 System Overview 4
5 Risk Rating Methodology 5
6 Issues 6
6.1 [High] Slippage protection mechanism is ineffective 6
6.2 [Medium] Unsold Cc tokens are permanently locked if token saleendsearly 6
6.3 [Low] Price deviation check is unsafe due to rounding truncation 7
6.4 [Low] Stale price feeds are not fully validated e 7
6.5 [Info] Unused _burn function e 8
6.6 [Info] answeredInRoundis deprecated L 8
7 Documentation Evaluation 9
8 Test Suite Evaluation 10
8.1 Compilation QUIPUL o 10
8.2 TestsOulpUL L o 10
8.3 Automated TOOIS e 11
8.3.1 AuditAgent 11
9 About Nethermind 12

” NETHERMIND
NM-0541 - chukkerCoin - SECURITY REVIEW .7 SECURITY

1 Executive Summary

This document presents the security review performed by Nethermind Security for chukkerCoin contracts. The audit review focused on
chukkerCoin protocol which consists of two main components, the chukkerCoin token and chukkerCoinTokenSale.

The audit comprises 416 lines of solidity code. The audit was performed using (a) manual analysis of the codebase, (b) automated
analysis tools, and (c) creation of test cases.

Along this document, we report 6 points of attention, where they are classified as one High, one Medium, two Low, and two Informational.
The issues are summarized in Fig. 1. Following feedback by Nethermind Security, all issues have been fixed.

This document is organized as follows. Section 2 presents the files in the scope. Section 3 summarizes the issues. Section 4 presents
the system overview. Section 5 discusses the risk rating methodology. Section 6 details the issues. Section 7 discusses the documentation
provided by the client for this audit. Section 8 presents the compilation, tests, and automated tests. Section 9 concludes the document.

Severity Status

Low

Low

(a) (b)

Fig. 1: Distribution of issues: Critical (0), High (1), Medium (1), Low (2), Undetermined (0), Informational (2), Best Practices (0).
Distribution of status: Fixed (6), Acknowledged (0), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review

Initial Report May 7, 2025

Final Report May 15, 2025

Repositories chukkerCoin

Initial Commit a361810

Final Commit faldca8

Documentation Provided in the code’s natspec
Documentation Assessment Medium

Test Suite Assessment High

https://www.nethermind.io/smart-contract-audits
https://github.com/gum-tech/chukker-coin
https://github.com/gum-tech/chukker-coin
https://github.com/gum-tech/chukker-coin/tree/a36181060e8cb2f64a69385612ec2e9d76e8ca5b
https://github.com/gum-tech/chukker-coin/pull/8/commits/fa1dca816f3807a6fc8a8823e5508107024e5982

%

NETHERMIND

SECURITY
2 Audited Files
Contract LoC Comments | Ratio Blank Total
1 interfaces/AggregatorV3Interface.sol 14 1 71% 5 20
2 tokensale/chukkerCoinTokenSale.sol 181 68 37.6% 57 306
3 listingfee/chukkerAppListingFee.sol 47 35 74.5% 18 100
4 token/chukkerCoin.sol 174 68 39.1% 59 301
Total 416 172 41.3% 139 727
3 Summary of Issues
Finding Severity Update
1 Slippage protection mechanism is ineffective High Fixed
2 Unsold Cc tokens are permanently locked if token sale ends early Medium Fixed
3 Price deviation check is unsafe due to rounding truncation Low Fixed
4 Stale price feeds are not fully validated Low Fixed
5 Unused _burn function Info Fixed
6 answeredInRound is deprecated Info Fixed

https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/interfaces/AggregatorV3Interface.sol
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/ChukkerCoinTokenSale.sol
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/listing_fee/ChukkerAppListingFee.sol
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token/ChukkerCoin.sol

NETHERMIND

{J} SECURITY

4 System Overview

The Chukker App consists of three core on-chain components: the chukkerCoin ERC-20 token, the chukkerCoinTokenSale contract that
handles its public sale with Chainlink price feeds, and ChukkerAppListingFee that collects fees for creating listings on the ChukkerApp.

Chukkercoin

7

ERC20 interactions

|
I
ChukkercCoinTokenSale i Aggregator\/?»Inteance '
—buyTokens —= latestRoundData> : :
VAN I
\

User

PalfForL?S‘ting

ChukkerdppListingFee

chukkerCoin (cC) Token
chukkerCoin is a gas-efficient, fully ERC-20-compliant token with built-in pausable and minting controls:
— On construction, the owner receives the full initial supply of 50 Million cC.
— The owner may pause and then restart all transfer and transferFrom calls to halt token movement in emergencies.

— Tokens can be minted by the owner until finishMinting() is called, which is at 50million cC at which point no further minting is
allowed, and this will be the max supply.

chukkerCoinTokenSale Contract

This contract sells up to 30,000,000 cC at a fixed price of $1 USD per token, with built-in price-feed and sale controls:
— Fetches real-time ETH/USD rates via a primary Chainlink oracle, with a fallback oracle if the primary fails.
— Requires a purchase of at least 500 cC ($500 USD) per call to buyTokens.

— If the remaining token inventory is less than the user’s desired amount, the contract sells all remaining tokens and refunds any
excess ETH.

— Owner can pause and restart the sale to stop new purchases; also supports emergency ETH withdrawal.

— Enforces a maximum sale cap of 30 million tokens and guards against 10% price deviations between on-chain updates.

ChukkerAppListingFee Contract

The ChukkerAppListingFee collects fees for creating listings on the ChukkerApp and allows a user to pay the listing fee.

NETHERMIND

{7} SECURITY

5 Risk Rating Methodology

The risk rating methodology used by Nethermind Security follows the principles established by the OWASP Foundation. The severity of
each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following values:
a) High: The issue is trivial to exploit and has no specific conditions that need to be met;
b) Medium: The issue is moderately complex and may have some conditions that need to be met;
c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:
a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk
High Medium High Critical
Impact Medium Low . Medium High_
Low Info/Best Practices | Low Medium
Undetermined Undetermined Undetermined Undetermined
Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind Security also uses three more finding severities: Informational,
Best Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

¢) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

https://www.nethermind.io/smart-contract-audits
https://owasp.org
https://www.nethermind.io/smart-contract-audits

© 0 N U A W N e

NN NN N NN R R R R R R e e e
N0 A @ N RO ©® ® N WA W N RO

I S

NETHERMIND

{J} SECURITY

6 Issues

6.1 [High] Slippage protection mechanism is ineffective
File(s): chukkerCoinTokenSale

Description: The chukkerCoinTokenSale: :buyTokens function allows users to purchase tokens during the sale. As per the current imple-
mentation, the function appears to attempt enforcing a 1% slippage tolerance on the number of tokens issued:

function buyTokens() external payable nonReentrant whenNotPaused {
// --SNIP
// Get price and calculate token amount
uint256 ethUsdPrice = getlLatestETHPrice();
uint256 ethValue = msg.value;

// Calculate USD value and ensure minimum purchase
uint256 usdValue;
unchecked {

usdValue = (ethValue * ethUsdPrice) / PRECISION;
3

if (usdvalue < MIN_PURCHASE_AMOUNT) revert MinimumPurchaseRequired();

// Calculate tokens with slippage protection
uint256 tokenAmount;
unchecked {
tokenAmount = (ethValue * ethUsdPrice) / PRICE_PER_TOKEN;
}

uint256 minAcceptableTokens;
unchecked {

minAcceptableTokens = (ethValue * ethUsdPrice * (100 - SLIPPAGE_TOLERANCE)) / (PRICE_PER_TOKEN * 100);
}

if (tokenAmount < minAcceptableTokens) revert SlippageExceeded();

However, the current implementation does not provide real slippage protection. Both tokenAmount and minAcceptableTokens are derived
from the same inputs— ethValue and ethUsdPrice. Consequently, tokenAmount will always equal or exceed minAcceptableTokens, ren-
dering the slippage check ineffective. This means that users will receive the computed tokenAmount regardless of any actual deviation in
the output they anticipated due to slippage.

Recommendation(s): Consider accepting the expected output amount from the user and assert 1% slippage protection against it.
Status: Fixed.
Update from the client: Fixed in commit e642880

6.2 [Medium] Unsold Cc tokens are permanently locked if token sale ends early
File(s): chukkerCoinTokenSale

Description: The chukkerCoinTokenSale contract is pre-funded with 30 million chukkerCoin tokens at deployment for sale to users. The
contract allows the owner to terminate the sale early using the endTokenSale function:

function endTokenSale() external onlyOwner {
tokenSaleEnded = true;
emit TokenSaleEnded(totalTokensSold);

This termination is irreversible, and the function does not include any mechanism to recover unsold tokens. As a result, if the token
sale is ended before all tokens are sold, the remaining chukkerCoin tokens will be permanently locked within the contract, making them
inaccessible and unusable.

Recommendation(s): Consider withdrawing any leftover chukkerCoin tokens when ending token sale.
Status: Fixed.
Update from the client: Fixed in commit 5ab5db3

https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/chukkerCoinTokenSale.sol
https://github.com/gum-tech/chukker-coin/pull/5/commits/e642880a55077dcc5f3d9d1306fc77d7128186a1
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/chukkerCoinTokenSale.sol
https://github.com/gum-tech/chukker-coin/pull/6/commits/5ab5db332af82eedd20a371c0bd32ae10c0b1a06

N

© ®w N o o«

10
11
12
13
14
15

N I

N o o

© 0 N e U oA W N e

o e
N o= O

NETHERMIND

{J} SECURITY

6.3 [Low] Price deviation check is unsafe due to rounding truncation
File(s): chukkerCoinTokenSale

Description: The getlLatestETHPrice function is used within buyTokens to fetch the latest ETH/USD price and includes a safeguard to
reject prices with deviations greater than 10%:

function getlLatestETHPrice() public returns (uint256) {
// --SNIP
if (lastPrice > 0) {
uint256 deviation;
unchecked {
deviation = currentPrice > lastPrice
? ((currentPrice - lastPrice) * 100) / lastPrice
. ((lastPrice - currentPrice) * 100) / lastPrice;

}

if (deviation > MAX_PRICE_DEVIATION) {
revert PriceDeviationExceeded();

}

However, this approach suffers from rounding truncation when computing the deviation. For example, if currentPrice is 1109¢18 ($1109)
and lastPrice is 1000e18 ($1000), the actual deviation is 10.1%, but due to integer division, the calculated result is truncated to 10%,
allowing the transaction to proceed when it should be reverted. This leads to acceptance of price deviations slightly over the allowed
threshold.

Recommendation(s): Consider replacing the division-based check with a cross-multiplication approach, which retains full precision, a
possible approach would be:

uint256 diff = currentPrice > lastPrice
? currentPrice - lastPrice
: lastPrice - currentPrice;

if (diff = 100 > lastPrice * MAX_PRICE_DEVIATION) {
revert PriceDeviationExceeded();

}

Status: Fixed.
Update from the client: Fixed in commit 49db7b5

6.4 [Low] Stale price feeds are not fully validated
File(s): chukkerCoinTokenSale

Description: The getLatestETHPrice function retrieves the ETH/USD price from a Chainlink price feed and performs several validity
checks on the response to ensure it is not stale:

function getLatestETHPrice() public returns (uint256) {

AggregatorV3Interface priceFeed = useFallbackOracle ? SECONDARY_PRICE_FEED : ETH_USD_PRICE_FEED;
try priceFeed.latestRoundData() returns (

uint80 roundId, int256 price, uint256 startedAt, uint256 updatedAt, uint8@ answeredInRound
) {

// Validate price data

if (roundId == 0 || startedAt == 0 || updatedAt < startedAt || answeredInRound < roundId) {

revert InvalidPriceData();
}

3
// -=SNIP

While the function includes several validation steps, it does not check whether the updatedAt timestamp is too old. As a result, if the price
feed becomes stale—e.g., due to downtime or delays—the function may return outdated prices, which will lead to incorrect token pricing.

Recommendation(s): Consider implementing an additional check to ensure that the updatedAt timestamp is within an acceptable fresh-
ness window (e.g., not older than 1 hour).

Status: Fixed.

Update from the client: Fixed in commit fb4cf31

https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/chukkerCoinTokenSale.sol
https://github.com/gum-tech/chukker-coin/pull/7/commits/49db7b585f3559e71e00986e97826763415eaa68
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/chukkerCoinTokenSale.sol
https://github.com/gum-tech/chukker-coin/pull/7/commits/fb4cf3120072d6a10417178ba481eeae944d33bf

NETHERMIND

{J} SECURITY

6.5 [Info] Unused _burn function
File(s): chukkerCoin

Description: The chukkerCoin token contract defines an internal _burn function intended to allow token burning. However, this function is
currently unused, as there are no public or external functions within the contract that invoke it. As a result, the _burn function is effectively
dead code and it is unreachable.

Recommendation(s): Consider revisiting the use of _burn.
Status: Fixed.

Update from the client: Fixed in commit faidca8

6.6 [Info] answeredInRound is deprecated
File(s): chukkerCoinTokenSale

Description: The getLatestETHPrice function retrieves the ETH/USD price from a Chainlink price feed and performs several validity
checks to ensure the data is not stale or invalid:

function getlLatestETHPrice() public returns (uint256) {

AggregatorV3Interface priceFeed = useFallbackOracle ? SECONDARY_PRICE_FEED : ETH_USD_PRICE_FEED;
try priceFeed.latestRoundData() returns (

uint80 roundId, int256 price, uint256 startedAt, uint256 updatedAt, uint8@ answeredInRound
) A

// Validate price data

if (roundId == 0 || startedAt == 0 || updatedAt < startedAt || answeredInRound < roundId) {

revert InvalidPriceData();
}

3
// -=SNIP

The check answeredInRound < roundId is no longer meaningful, as answeredInRound has been deprecated. According to the Chainlink
documentation, answers are now computed and returned within the same round, making this comparison redundant.

Recommendation(s): Consider removing the answeredInRound < roundId check to simplify the validation logic and avoid reliance on
deprecated fields.

Status: Fixed.

Update from the client: Fixed in commit fb4cf31

https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token/chukkerCoin.sol
https://github.com/gum-tech/chukker-coin/pull/8/commits/fa1dca816f3807a6fc8a8823e5508107024e5982
https://github.com/gum-tech/chukker-coin/blob/a36181060e8cb2f64a69385612ec2e9d76e8ca5b/src/token_sale/chukkerCoinTokenSale.sol
https://docs.chain.link/data-feeds/api-reference#latestrounddata
https://docs.chain.link/data-feeds/api-reference#latestrounddata
https://github.com/gum-tech/chukker-coin/pull/7/commits/fb4cf3120072d6a10417178ba481eeae944d33bf

NETHERMIND

{J} SECURITY

7 Documentation Evaluation

Software documentation refers to the written or visual information that describes the functionality, architecture, design, and implementation
of software. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how
the software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

— Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

— User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

— Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

— APl documentation: APl documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

— Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

— Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

Remarks about chukkerCoin documentation

The chukkerCoin team has provided a comprehensive walkthrough of the project in the kick-off call, and the code natspec includes

a detailed explanation of the intended functionalities. Moreover, the team addressed all questions and concerns raised by the
Nethermind Security team, providing valuable insights and a comprehensive understanding of the project’s technical aspects.

%

NETHERMIND

SECURITY

8 Test Suite Evaluation
8.1 Compilation Output

> forge compile
[] Compiling...
[1 Compiling 43 files with Solc 0.8.20
[]1 Solc 0.8.20 finished in 1.91s
Compiler run successful with warnings:
Warning (2018): Function state mutability can be restricted to view
--> test/token/ChukkerCoin.t.sol:159:5:

|
159 | function testDomainSeparator() public {

| * (Relevant source part starts here and spans across multiple lines).

8.2 Tests Output

> forge test

Ran 14 tests for test/token_sale/ChukkerCoinTokenSale.t.sol:ChukkerCoinTokenSaleTest
[PASS] testConcurrentPurchases() (gas: 281726)

[PASS] testEmergencyWithdraw() (gas: 148634)

[PASS] testEndTokenSale() (gas: 54823)

[PASS] testFallbackPriceFeed() (gas: 160771)

[PASS] testInitialSetup() (gas: 26890)

[PASS] testMinAcceptableTokens() (gas: 15133)

[PASS] testPartialPurchase() (gas: 166765)

[PASS] testPauseAndUnpause() (gas: 35720)

[PASS] testPriceFeedIntegration() (gas: 139541)

[PASS] testSlippageProtection() (gas: 152521)

[PASS] testTogglePriceFeed() (gas: 38479)

[PASS] testTokenPurchase() (gas: 139563)

[PASS] test_RevertWhen_EmergencyWithdrawNoBalance() (gas: 13024)

[PASS] test_RevertWhen_PurchaseAmountTooSmall() (gas: 64231)

Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 5.39ms (3.81ms CPU time)

Ran 14 tests for test/listing_fee/ChukkerAppListingFee.t.sol:ChukkerAppListingFeeTest
[PASS] testConstructor() (gas: 21480)

[PASS] testConstructorRevertZeroAddress() (gas: 84179)

[PASS] testConstructorRevertZeroFee() (gas: 84341)

[PASS] testGetListingFee() (gas: 12543)

[PASS] testPayForListing() (gas: 69942)

[PASS] testPayForListingInsufficientAllowance() (gas: 26331)

[PASS] testSetListingFee() (gas: 21560)

[PASS] testSetListingFeeRevertZero() (gas: 10614)

[PASS] testSetListingFeeUnauthorized() (gas: 14066)

[PASS] testWithdrawTokens() (gas: 85017)

[PASS] testWithdrawTokensExceedingBalance() (gas: 72831)

[PASS] testWithdrawTokensUnauthorized() (gas: 14332)

[PASS] testWithdrawTokensZeroAddress() (gas: 68653)

[PASS] testWithdrawTokensZeroAmount() (gas: 17993)

Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 26.55ms (2.62ms CPU time)

Ran 4 tests for test/token/ChukkerCoin.fuzz.t.sol:ChukkerCoinFuzzTest

[PASS] testFuzz_ApproveAndTransferFrom(uint256,uint256) (runs: 256, : 82603, ~: 84434)
[PASS] testFuzz_MultipleTransfers(uint256[1) (runs: 256, : 85419, ~: 84805)

[PASS] testFuzz_Permit(uint256,uint256,uint256) (runs: 256, : 122455, ~: 122244)
[PASS] testFuzz_Transfer(uint256) (runs: 256, : 54802, ~: 55255)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 198.87ms (325.47ms CPU time)

10

%

NETHERMIND

SECURITY

Ran 14 tests for test/token/ChukkerCoin.t.sol:ChukkerCoinTest
[PASS] testAllowance() (gas: 100536)

[PASS] testApproveAndTransferFrom() (gas: 75667)

[PASS] testCannotMintAfterFinishMinting() (gas: 39358)

[PASS] testDomainSeparator() (gas: 10495)

[PASS] testInitialSupply() (gas: 16203)

[PASS] testMinting() (gas: 73009)

[PASS] testMintingRestrictions() (gas: 51093)

[PASS] testPause() (gas: 56033)

[PASS] testPermit() (gas: 110656)

[PASS] testPermitExpired() (gas: 49207)

[PASS] testTokenMetadata() (gas: 13579)

[PASS] testTransfer() (gas: 47069)

[PASS] test_RevertWhen_PauseUnauthorized() (gas: 13089)

[PASS] test_RevertWhen_TransferInsufficientBalance() (gas: 18854)
Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 1.82s (8.23ms CPU time)

[PASS] testFuzz_CalculateMinAcceptableTokens(uint256,int256) (runs: 256, : 18127, ~: 18181)
[PASS] testFuzz_CalculateTokenAmount(uint256,int256) (runs: 256, : 16417, ~: 16455)

[PASS] testFuzz_FallbackPriceFeed(uint256) (runs: 256, : 168833, ~: 168849)

[PASS] testFuzz_MaxPurchase(uint256) (runs: 256, : 141115, ~: 141143)

[PASS] testFuzz_MinPurchase(uint256) (runs: 256, : 89977, ~: 68893)

[PASS] testFuzz_MultipleUsers(address[]) (runs: 256, : 207987, ~: 211100)

[PASS] testFuzz_PriceFeedIntegration(int256) (runs: 256, : 145799, ~: 145791)

[PASS] testFuzz_PriceManipulation(int256) (runs: 256, : 144515, ~: 144506)

[PASS] testFuzz_SlippageProtection(uint256) (runs: 256, : 191036, ~: 191060)

[PASS] testFuzz_TokenPurchase(uint256) (runs: 256, : 144731, ~: 144771)

Suite result: ok. 10 passed; 0 failed; 0 skipped; finished in 1.82s (2.09s CPU time)

Ran 10 tests for test/token_sale/ChukkerCoinTokenSale.fuzz.t.sol:ChukkerCoinTokenSaleFuzzTest

Ran 5 test suites in 1.83s (3.87s CPU time): 56 tests passed, 0 failed, 0 skipped (56 total tests)

8.3 Automated Tools
8.3.1 AuditAgent

All the relevant issues raised by the AuditAgent have been incorporated into this report. The AuditAgent is an Al-powered smart con-
tract auditing tool that analyses code, detects vulnerabilities, and provides actionable fixes. It accelerates the security analysis process,
complementing human expertise with advanced Al models to deliver efficient and comprehensive smart contract audits. Available at

https://app.auditagent.nethermind.io.

11

https://app.auditagent.nethermind.io

NETHERMIND

{7} SECURITY

9 About Nethermind

Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet's approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

— Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

— Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

— Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

12

nethermind.io

NETHERMIND

{7} SECURITY

General Advisory to Clients

As auditors, we recommend that any changes or updates made to the audited codebase undergo a re-audit or security review to address
potential vulnerabilities or risks introduced by the modifications. By conducting a re-audit or security review of the modified codebase,
you can significantly enhance the overall security of your system and reduce the likelihood of exploitation. However, we do not possess
the authority or right to impose obligations or restrictions on our clients regarding codebase updates, modifications, or subsequent audits.
Accordingly, the decision to seek a re-audit or security review lies solely with you.

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fithess for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

13

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	Risk Rating Methodology
	Issues
	[High] Slippage protection mechanism is ineffective
	[Medium] Unsold Cc tokens are permanently locked if token sale ends early
	[Low] Price deviation check is unsafe due to rounding truncation
	[Low] Stale price feeds are not fully validated
	[Info] Unused _burn function
	[Info] answeredInRound is deprecated

	Documentation Evaluation
	Test Suite Evaluation
	Compilation Output
	Tests Output
	Automated Tools
	AuditAgent

	About Nethermind

